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Abstract

We describe an algorithm for the asymmetric traveling salesman
problem (TSP) using & new, restricted Lagrangean relaxation based on the
assignment problem (AP). The Lagrange multipliers are constrained so as
to guarantee the continued optimality of the initial AP solution, thus
eliminating the need for repeatedly solving AP in the process of computing
multipliers. We give several polynomially bounded procedures for
generating valid inequalities and taking them into the Lagrangean function
with a positive muitiplier without violating the constraints, so as to
strengthen the current lower bound. Upper bounds are generated by a fast
heuristic whenever possible. When the bound-strengthening techniques are
exhausted without matching the upper with the lower bound, we branch by
using two different rules, according to the situation: the usual subtour
breaking disjunction, and a new disjunction based on conditional bounds.
We discuss computational experience on 120 randomly generated asymmetric

TSP's with up to 325 cities, the maximum time used for any single problem

being 82 seconds. Though the algorithm discussed here is for the asymmetric

TSP, the approach can be extended to the symmetric TSP by using the
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1. oQutline of the Approach

The traveling salesman problem (TSP), i.e., the problem of finding a
minimum-cost tour (or hamiltonian circuit) in a directed graph G = (N,A),

can be formulated as the problem of minimizing

(1) £ P e

X
ieN jeN 1371]

subject to

Tz x, .= 1 4 e¢N

jeN 1]
- 3 1 N
X ] > jC
ieN 1]
3) xij € {0)1}’ i,jeN
%) x is a tour.

For (i,j) eA, c,, is the cost associated with the arc (i,j); for

ij

(1,3) €A, Sy ™

Conditions (3), (4) can be replaced by

(5) xijzo’ i’jCN

t

x ao, teQ

(6) % T &

>
ieN jeN o

t
ij
where (6) is a set of inequalities which, together with (2) and (5),
define the convex hull of all tours in G.
If S and T are node sets, we denote (S,T) = {(i,]) c¢A |1¢s, jeT}.
For any problem P, we denote by v(P) the value of (an optimal solution to) P.
We describe an arc premium/penalty-based branch and bound method for
solving TSP, which uses
(a) a new Lagrangean relaxation of TSP and a restricted Lagrangean

problem derived from it, which has constraints on the multipliers;
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(b) several procedures for generating inequalities which can be taken
into the Lagrangean function with a positive multiplier (premium or penalty),
without violating the constraints or changing the multipliers generated earlier;

(¢) a new branching rule based on disjunctions derived from conditional
bounds.

We first outline the method, then discuss its various components in
detail.

The assignment problem (1), (2), (5) associated with TSP will be
denoted by AP. It is well known that any integer solution to AP is either
a tour (hamiltonian circuit), or a collection of subtours (a union of dis-
joint circuits). The Lagrangean problem mentioned under (a) is an assign-
ment problem obtained from AP by applying premia or penalties to certain
arcs, in a way which is equivalent to taking into the objective function,
in a Lagrangean fashion, some of the constraints (6).

From the set of inequalities (6) we extract a subset

X. . > at telTcQ

t
%) T T ajx . >ag :

ieN jeN
and call LP the linear program (1), (2), (5), (7). Though the set Q is at least
exponential in |N|, empirical evidence as well as theoretical considerations
indicate that there are relatively small subsets T of Q such that the value
of the corresponding LP comes very close to (or coincides with) that of TSP.
Using Lagrangean relaxation on (7) and denoting by w the vector of
Lagrange multipliers,we obtain the problem L(w,x), equivalent to LP, of

finding w > 0 to maximize z(w), where

’ . t t
1) zw) =min £ I (c,,- T wa,)x,  , + T wa_.,
teN Jen 11 per ML pop €0
subject to
T x,,=1, 1i¢eN
JeN 1]
@) £ x,,=1, jeN
ten 1
5) Xgy 2 0, i,jeN.




The Lagrangean relaxation L(w,x) of TSP can be used to generate lower
bounds on v(TSP). While L(w,x) may yield very strong bounds indeed,
depending on the choice of the inequalities (6), its solution via, say,
subgradient optimization, requires a considerable computational effort,
including the solution of the assignment problems associated with every
vector w generated during the procedure. Instead, we consider a restriction
RL(w,x) of the Lagrangean relaxation L(w,x). Let X be an optimal solution to
AP, i.e., to the assignment problem with cost function (1). RL(w,x) is then
the problem of finding w > 0 to maximize z(w) defined by (1'), (2) and (5),
subject to
if x,. >0

j
(8) u, +v,+ £ wa

for some u,v ¢Rr".

Problem RL(w,x) has two properties which make it useful towards
solving TSP.

First, any Q, ¥ and # satisfying (8) and # > 0 is a feasible solution
to the linear program dual to LP; therefore the objective function value
of this dual linear program is a lower bound on v(LP), hence on v(TSP),

i.e., we have

Proposition 1. 1If &, ¥ and ¥ > 0 satisfy (8), then

(9) T4+ 0+ 3 Gcag
i:N jeN teT

< v(TSP).

Second, while x remains an optimal solution to the assignment problem

with the modified objective function (1’), the changes brought about by

the penalties/premia Gt, t ¢T, are likely to create new, alternative optima.

N e
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Whenever such an alternative optimal solution X to the assignment problem

('), (2), (5) turns out to be a tour, it has the following property.

Proposition 2. If kx satisfies with equality the inequality (7) indexed

by t for all t ¢T such that Qt > 0, % is an optimal tour.

Proof. X and (i,V,W) are feasible solutions to LP and its dual,

respectively. From the definition of X, we have

~ ~ ~ t
u, ¥y, ¥+ I wa
i j teT t 1) ij

whenever iij > 0. This, together with the condition of the Proposition,

: means that X and (U,V,w) satisfy the complementary slackness conditions. -

Thus X is an optimal solution to LP, hence an optimal tour. |

We start by solving the assignment problem AP in the free L
variables, Next we use several different procedures for generating an
increasing sequence of lower bounds on v(TSP), by successively identifying

inequalities (7) that

(1) are not satisfied by the current solution x to AP, and

. (ii) admit a positive multiplier w, which, together with the

multipliers already assigned, satisfies (8); £ |
and by setting the multipliers v, each time to the greatest positive J
value compatible with (ii). At any given stage, the admissible graph - T
Go = (N,Ao) is the spanning subgraph of G containing those and only »
those arcs with zero reduced cost, i.e., j

]
Ay = {(i,)) ¢A |u1 + v + tf‘l’ vtaij-cij}.

When no more inequalities (7) satisfying conditions (i) and (ii)

can be found, we store the bound given by (9) and try to find a tour in




the admissible graph. If a tour is found which satisfies with equality
all inequalities associated with positive multipliers, it is optimal for
the given subproblem. If a tour is found which violates this condition
for some inequalities, attempts are made at finding new inequalities
which satisfy the condition and admit positive multipliers. If sugécessful,
these attempts strengthen the lower bound, and they may also eliminate the
inequalities that are slack. In any case, the value of the tour (in the
original costs cij) provides an upper bound on v(TSP), while (9) provides
a lower bound for the current subproblem; and we branch. Finally, if no tour is
found in GO’ we add arcs to G0 in the order of increasing reduced costs until
a tour is found in the resulting graph. The cost of this tour again provides
an upper bound on v(TSP), while (9) still provides a lower bound for the
current subproblem; and we branch.

The assignment problems are solved by the Hungarian method, the
same method is used to recalculate the reduced costs whenever some u, and

i

vj have to be changed. The constraints (7) are ''subtour-breaking'

inequalities and combinations of the latter with some of the equations

(2), but they are used here in a novel way. The bounding procedures are all
polynomial-time algorithms, considerably more efficient (in terms of improvement
obtained versus computational effort) than earlier approaches (like [3]), as
evidenced by the computational results of section 5. Searching the admissible
graph Go for a tour is accomplished by a specialized implicit enumeration
procedure, with a cut-off rule. Finally, for branching we use two different
rules, one which derives a disjunction from a conditional bound [1], and one

which breaks up a subtour.

A preliminary version of our approach, with fewer and less sophisticated

bounding procedures, was discussed in [2].
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2. Bounding Procedures

At any stage of the procedure, the reduced costs
e, . weg. . s ww, = L !
ij ij i j teT | 1
will be defined relative to the subset T' T of inequalities already
introduced into the function (1’).
We use three types of inequalities (7), and we will denote by Tl’ T2

and T, the corresponding subsets of T.

3
For teT, let ¢ # S, SN and §t = N\St' An arc set of the form

K, = (5.,8,.)
K is called a (directed) cutset. -
| Clearly,the inequalities
! (78) p> X. Z 1’ teT
- (1,9, :
i
' are satisfied by every tour, and so are the inequalities
s 3
(767) iz; ‘zs xijslst] 9 teT,
€S, JeS,
or, to preserve the direction of the inequality, 3
(7b) -izs jzs xijgl- [st[, teT,. i
i = |~ eS¢
v For a given set Sc’ the ''subtour-breaking' inequalities (7a) and (7b)
are equivalent: (7b) can be obtained from (7a) by subtracting the sum of

the equations

o X =1, ieS_,
jeN ij t

and (7a) can be obtained from (7b) by the reverse operation. Nevertheless,
the presence of inequalities associated with the same set st in both

subsets (7a) and (7b) need not be avoided, since it may enrich the set of dual

vectors (u,v,w) satisfying (8) and w > 0.




Finally, for any k¢N, St c N\ {k} and §t: = N\St’ the arc sets
7 a - ” - =
K = 5,8, \{k]D and KT =(S \{k}s)

are (directed) cutsets in the subgraph (N\{k }> of G induced by N\ {k ].
Proposition 3. The inequalities

(7¢) z Ry s 2 La teT
(1,j)cx;:ux:_ 1]

k.| are satisfied by every tour.

Proof. Every x¢g {0,1}n that violates (7c) corresponds to a subgraph G’
of G which is either disconnected, or contains an articulation point k ;
hence G’ camnot be a tour.||

Actually, more can be said about the family (7c):

Proposition 4. 1In the presence of the constraint set (2), for every
k eN and StcN\[k}, the inequality (7c) is implied by the two subtour-breaking

inequalities associated with the node sets s, U {k} and S, respectively, i.e., by

(7v),

v

'lst[

- = = xij
icStU{k] jcStU{k]
and
(7b), =8 B Xy 2 1= s,l-
ies, jes,

Proof. The inequality (7c) is the sum of (7b)1, (7b)2 and the

equations
A IR T S ies
JeN ij t
E X%, jes .|
ieN i 2

The components of w associated with the inequalities (7a), (7b), and

(7c) will be denoted by A, u and v respectively.
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2.1. Bounding Procedure 1 starts by searching for an inequality (7a) which ;

satisfies conditions (i), (..) of section 1, i.e., is violated by x and
can be assigned a positive multiplier without making any of the reduced
costs negative. Clearly, these conditions are satisfied for the inequality

(7a) defined by a cutset Kt’ if and only if
(10) K, nNAy= f,

where Ao is the arc set of the admissible graph Gye
To find Kt satisfying (10), we choose any node 1ieN and form its

reachable set R(i) in GO' If R(i) = N, there is no cutset (S,S) with i ¢S,

satisfying (10), so we choose another i ¢N. If for some i ¢N, R(i) # N, then

Kt = (Sk,§k) satisfies (10) for § = R(i). Furthermore,

(11) A, = min c,
© ek, M

is clearly the largest value that can be assigned to the corresponding
multiplier without making some reduced costs negative. We thus assign A

lt the above value and set

=gl =X

cij ij e’ (i)j)GKtr

i.e., we apply a premium of Kt to each arc of the cutset Kc‘ As a result
of this, the arcs for which the minimum in (11) is attained, become

admissible, and we add them to A,, thus enlarging the admissible graph GO.

0’
Next, we extend the reachable set R(i) of node 1i by using the new

arcs of G0 and either find R(1i) = N, or locate another cutset Kt satisfying
(10). If R(i) = N, again we choose another node.

This procedure ends when R(i) = N, ¥ i ¢eN. At that stage 70 is

strongly connected, and

anoiﬂ

for all cutsets K = (S,5), ScN.
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Proposition 5. Bounding Procedure 1 stops after generating at most

%(h - 1) (h+2) cutsets, where h is thk~ number of subtours in X.

Proof Starting with node il belonging to subtour Sl’ every cutset adds to G0

an arc which includes into R(il) a new subtour, After generating at most h-1l cut-
sets, R(11)=N. Now starting with node i2 belonging to subtour SZ#S1 and proceeding
to find R(iz), again at most h-1 cutsets can be generated. However, since we now
have 123 R(il) and 11e R(iz), the number of strong components of the current

graph GO is at most h-1. Thus, continuing to find R(i3) for some node i3

belonging to a subtour S3, 81#53#52, at most h-2 cutsets can be generated,

and since the vertices of Sl’ S2 and S3 now form a strong component, the

number of strong components in the current graph G0 is at most h-2. Continuing

in the same way, the number of cutsets generated by the procedure (until G0

becomes strongly connected) is at most

(h-1) + (h-1) + (h-2) + (h~3) +...+ 1 = %(h-l) (h+2). ||

Since the optimal dual variables Gi’ ;j associated with x are not

changed by this procedure, and since

% ﬁi 4 T v, =cx = v(AP),
ieN jeN J

if T1 is the index set of the inequalities generated by Bounding Procedure 1, the
lower bound obtained for the current subproblem is, from Proposition Ly

(12) By = VAP) + T .
tcrl

2.2. Bounding Procedure 2 starts by searching for an inequality (7b) which
is violated by x and admits a positive penalty without changing any of the

A teT

- 1+ IfS;,...,5, are the node sets of the h subtours of X, every

inequality (7b) defined by S_, t = 1,...,h, is violated by x; but a positive

penalty by can be applied without violating the condition that iij >0

implies Eij = 0, only by changing the values of some uy and vj, and only if

Lo n e BT R B JREL v ———— T T
e o

ru
[
i
|

|

i
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an additional condition is satisfied. This condition can best be expressed
A in terms of the assignment tableau used in conjunction with the Hungarian
method. A line of the tableau is a row or a columm, a cell of the tableau

is the intersection of a row and a column. Cells correspond to arcs and

i
"
)

are denoted the same way.

Let St be the node set of a subtour of i, let

A = {d,1) A, 1 1.3 €S,}
and

A; = {(i,]) eA, | %5 > 0}.

; Proposition 6. A positive penalty can be applied to the arcs with 3
' both ends in St if and only if there exists a set C of lines such that

(i) every (i,j) eA; is covered by exactly one line in C,

(ii) every (i,j) eAt\\A; is covered by at most one line in C,

(iii) no (i,j) cAO\\At is covered by any line in C.

If such a set C exists, and it consists of row set I and column set J,

then the maximum applicable penalty is

(13) u. = min e,,,
£, e

where

(14) M= (I1,J) U (I,5) U G,

Proof. Sufficiency. Suppose there exists a line set C, consisting
of row sets I and column sets J, satisfying conditions (i), (ii), (iii).
Then adding an amount y > 0 to Eij for all (i,j) e (S,,S,), as well

as to all ai, ielI, and all ;j’ j eJ, produces a set of reduced

costs E;j such that E;j = 0 for all (i,j) cA;, since C = IUJ satisfies (i).

Further, from property (ii) of the set C, E;j 20, ¥ (L) eAt\\A;' and from
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(iit), Eij =c . =0,V (i,j) ¢ A \At. Thus the only reduced costs

13 0
that get diminished as a result of the above modification, are those

associated with arcs (i,j) €A for which either (@) nothing is added to

i ded u V. c
cij and 4 is added to u, or to vj, or (B) o is added to cij and

to both Gi and Gj‘ The two sets of arcs for which (o) holds

are (I,§t) and (§t’J); whereas the arc set for which (B) holds is (I,J).

The union of these three arc sets is M defined by (l4). Thus a positive

penalty at most equal to e defined by (l3) can be applied to the arc set

(5.,S,) in the above described manner without producing any negative reduced

costs.

Necessity. Suppose a penalty pu > 0 can be applied to the arc set

(St’st)' Since adding p > 0 to c,., ¥ (i,3) c(St,St), produces positive

ij
reduced costs for all (i,j) eA , in order to obtain reduced costs E;j =0
for all (i,j)) sAé, one must increase by u the sum ﬁi + ;j for all (i,j)eAé.

It is easy to see that if this can be done, then it can be done by adding u to

U, or v (but not to both), for every (i,j)GAé; hence there exists a set C of

u

i 3

lines satisfying condition (i). Further, if (i,j) cAt\AL, then u cannot be added
to both Gi and ;j without creating Eij < 0, hence C must satisfy (ii). Finally,

\At, then u cannot be added to either u, or v, without making c', < O,

if (f,3) A i 5 ij

0
hence condition (iii) must also hold.||

Given the node set St of a subtour, we have to check whether a set
of lines C satisfying (i), (ii), (iii) exists. This can be done as follows.
First, every row i ¢S _ such that (i,j) €A, for some j cN‘\St, and
every column j cst such that (i,j) ¢A0 for some i eN\\St’ can be ruled out
as a candidate for entering C. Let R and K be the index sets of such
rows and columns respectively, and let

I, = {teN|(1,5)eAl and Jek},

Jy = {JeN|(1,5)eA! and 1eR}.




Y2 =

Since by (i) every cell of Aé must be covered by at least one line in C,
C must contain IfJJ1' For the same reason, if
(15) At’ngnx#o
then no positive penalty can be applied to the arc set (St’st)'

Since by (i) and (ii) every cell of Aé must be covered by at most one
line in C, if
(16) At N I1 n J1 #0,
then again no positive penalty can be applied to the arc set (St’st)'
Now assume neither (15) nor (16) holds. Then if (Il'Jl) covers Aé, we set
C = I1 U J1 and we are done; otherwise we use the Hungarian algorithm to
complete the search for a cover satisfying (i), (ii), (iii). If such a
cover exists, the Hungarian algorithm finds it, and Me given by (13) can be
applied as a penalty; otherwise the Hungarian method finds a cover which violates
some of the conditions (i), (ii), (iii), in which case no positive penalty can
be applied.

1f T2 is the index set of the inequalities (7b) which admit positive

penalties s Ve have the following

Proposition 7.

17 B, =B, + I u
) 2 - teT2 s

is a lower bound on the value of the current subproblem.

Proof. Whenever a penalty ut > 0 is applied to an arc set (St’st)
associated with a constraint (7b), the cost function of AP is modified, and
the value of the solution X, hence also the value of 2 solution to the dual
of K;, the assignment problem with the modified costs, is increased by
]st}pc. Thus, after applying \Tzl penalties s the value of an optimal

solution (4,v) to the dual of AP is
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: Z 0+ z Vy=v@ap) + ¢ (Selug-
% ieN jeN tcT2
E
3 Using Proposition 1, and noting that ag =1 for t ch and ag =1 - IStI
7 for t eT2, we obtain the lower bound
q B,= L 8§, + X %+ T A+ = (1-]|s |
i 2 et e ) tel, °  tel, RSB
1

=v(AP) + T >‘c+ z Be

3 teT, teT,

=B, + Z u_ .|
: teT2 .

2.3, Bounding Procedure 3 searches for inequalities of the form (7¢) which

are violated by x and admit a positive multiplier Ve without requiring

changes in the multipliers assigned earlier. This is done by checking for

each node whether it is an articulation point of GO. If node k is an articula-

tion point, i.e., if the subgraph <N - {k£> of G0 is disconnected, with St

as one of its components, then denoting Ké = (St,gt\[k}) and K; = (EC\{k},st)

we have

v - " -
K. N Ao 9, K.NA 0.

0

Thus we can apply a positive premium to the arcs in the pair of

cutsets K;, Kg, whose value is

(18) v = min

c
t

” ij’
(i.J)CK'tUKt

If T3 is the index set of all those inequalities (7¢) found to admit

a positive multiplier, at the end of Bounding Procedure 3 we have (from

ERMEATING & O T TN M, % TR T S AR T R
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Proposition 1 and (17)) the lower bound

83 =B,y . BN

t
tcT3
(19) = v(AP) + T Ae *+ T a bR V-
teTl tcTz tcT3

If at any time during the Bounding Procedure the current lower bound
matches (or exceeds) the upper bound given by the value of the best

available tour, the current subproblem is fathomed and we turn to

another node of the search tree. Otherwise, after obtaining the bound

B, we try to find a tour in G

3 0’

2.4. Example 1. Cousider the 9-city TSP whose cost matrix is shown in Table 1.

2106 % & 3 48 14 33 ¥ 13
k1 AR SRR A R S G B T o R
A5 45 17 % S 8 11 18 16
F~ij7= 51106, 14 16 X 1% 12 15 13 Table 1
;8 AR S ) 1 o T -
/ - - 2o % 31 X 9
8 e ) e y 12 e 43 4
al 9 5 SR ) - - R X

The solution to AP has value 31, The reduced cost matrix [Z ] is

i)

shown in Table 2 and the solution x is given by x,, = 1 for those 1,3

1]

corresponding to boxes in that matrix, X, . = 0 otherwise. The corresponding

ij
admissible graph is shown in Fig. 1.




<15
!
i 2 ] “4 3 ) !

o 1
1}z foi ¢ 9 13 10 1 )1 ’
214 x [0} B 14 10 8 10 1 '
380 3 x % M 11 1 & N ‘
s . {
“ 8 10 12 X 0y 3 & 10 1% |
i — |
(& =5 [7 11 13 o] x 13 9 12 10 Table 2. |
6|]¢ 4 8 6 11 x o, 4 s '

i3 5 & 9 2 9o x o %

$lo ¢ 3 s 8 & 9 x o]

(o]
p17 32 72 5 6 jol] 5 5 x

Bounding procedure 1. Cutset K, = ( {1,2,3}, {4,5,6,7,8,9} admits A, = 4,

1
3 and cutset K, = ( {4,5}, {1,2,3,6,7,8,9} ) admits 1, = 3. The lower bound,
from (12), becomes B1 =31 +4 + 3 = 38, The new reduced cost matrix is shown

in Table 3 and the corresponding admissible graph in Fig. 2.

: 28 48 8 T BW -

1i{x|of 6 5 9 6 6 5 7
; 2|4 x 0] 4 10 & 4 & 9

F ey 2% @ T ¥ .0 7
$ 45 7 9 m-10 % .3 9B

‘ (5475 {4 8 10 0. X 10 L Table
6]4 4 8 6 1t x 0 4 3
i3 s 4 0 2 % 3 0] %
gl 4 3 8 & & 9% % |9
g1y 3 2 9 -w 4] & 5 % :

e r—— i, Vet -




| Fig 1. Graph Gy-defined by the AP solution.
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Bounding procedure 2. The subtours of the AP solution are (1,2,3), (4,5) and
(6,7,8,9). Subtours (1,2,3) and (6,7,8,9) do not admit positive values of
By However, inequality (7b) for subtour (4,5) is
= Onay * mggd 251,
and a set C of lines of the matrix of Table 3 satisfying the conditions of
Proposition 6 for this subtour is given by: (row 5, column 5). From this
set C we compute B * 2. From Proposition 7, the lower bound becomes

B, = 38 + 2 = 40.

2
The new reduced cost matrix [Zij1 is shown in Table 4, and the corresponding
admissible graph in Fig. 3.
8% 4 8 %P8 & .
yix /¢ & § 9 &% § 7%
21« x ol a 8 & %« & 9o
yHe 3 % 5.8 7Y 3 @ 9
4% 1.9 X gl 4 3 . .% -8
0= 5 f2 & 78 o x 8§ & 7 8 Table 1
g4 4 B 6-9 x 9 4 3 .
713 5 4 0 o % x lo %
ale 5 3.8 & & 9 = [
. 917 3 7% & B 8 5 =2

Bounding procedure 3. Vertex 8 is an articulation point of the admissible
graph of Fig. 3. The cutsets corresponding to this articulation point are
Ki = ({1,2,3}, {4,5,6,7,9}) and Ki = ({4,5,6,7,9}, {1,2,3)). Applying (18) to
Table 4, we obtain vt=2, corresponding to element (5,1). From (19) the lower
bound becomes 83= 40 + 2 = 42. The new reduced cost matrix and the corresponding

admissible graph are shown in Table 5 and Fig. &4 respectively.
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3. Finding a Tour and Improving the Bound

¥,

3

DT

Establishing whether a graph contains a tour (i.e., is hamiltonian)

|

is, from the point of view of worst-case analysis, of the same order of

M difficulty as finding an optimal tour. lowever, for the vast majority of
all possible graphs, the first problem is incomparably easier than the second
one. We use a specialized implicit enumeration procedure, the multi-path

method of [4], ch. 10, for finding a tour in G, if one can be found without

0

exceeding a given time limit. Let X denote the solution associated with such

a tour. If X satisfies with equality all inequalities associated with positive
multipliers (i.e., if the tour defined by X crosses exactly once each cutset Kt’ teT,,

contains exactly |St| - 1 arcs with both ends in S, for all sets S, teT,,
“ e €T,), then

k- and contains exactly one arc of each pair of cutsets, Ké, Kt
b
3 x defines an optimal tour for the current subproblem, and the latter is fathomed.

For example, after bounding procedure 3, when G, is the graph of Fig. &,

0

the following tour is detected in G H=(1,2,3,8,9,6,7,4,5,1). This tour

o
satisfies with equality all four constraints with positive associated

Lagrange multipliers; i.e., H contains exactly one arc of each of the cutsets

K, and K,, contains exactly one arc of the subtour {(5,4), (4,5)}, and

contains exactly one arc of the set Ki U KY. Thus, H is an optimal solution

to the TSP and B3- 42 is its value,
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If an inequality that is slack for X belongs to one of the sets (7a)

or (7b), we attempt to strengthen the current lower bound by introducing
some new inequalities (of the same type) that are tight for x, and that
admit positive multipliers. If the attempt is successful, it may also

result in the removal of the inequality that is slack for X.

g T tea g

3.1. Bounding Procedure 4. Suppose the inequality (7a) associated with

the cutset Kt is slack for %, i.e., the tour H defined by % intersects Kt
o in more than one arc, and let HﬂKt = {(il,jl),...,(ip,jp)}. For every

(ir,jr) € ﬁﬂKt, let S* be a set of nodes containing jr and such that, denoting
3F = N\Sr, the cutset Ktr= (Sr,sr) contains no other arc of i than (ir’jr)‘

3 Then the inequalities
z xij > b S R
(1,3)eK. .
are all satisfied with equality by X. Since every Ktrcontains an arc with
zero reduced cost, namely the arc (ir,jr) also contained in Kt’ the above

inequalities do not admit a positive premium, unless the premium \t

applied to Kt is reduced. If this is done, however, then a positive
premium may be applicable to several of the sets Ktr,and the sum of these
premia may well exceed the amount by which xt must be reduced, i.e., an
improvement of the lower bound may be obtained. The conditions under which

this is possible are stated in the next two propositions.

Proposition 8. The tour ﬁ intersects the cutset Ktr- (§r,sr) only in

the arc (ir,jr), if and only if the arcs of ﬁ with both ends in S* form a

path whose first node is jr.

PPN R ST e R




Proof. Let H = {(i(1),...,1i(n)}, and without loss of generality,

assume (ir.jr) = {i(1),i(2)}. Now suppose either s¥ = {j(2)}, or the

e -3 1

arcs of fl with both ends in S* form a path {i(2),...,i(k)}. Then

intersects the cutset Ktr = (gr,Sr) in the single arc [i(1),i(2)] (ir,jr).

Conversely, suppose S° # {j(2)} and the arcs of H with both ends in S*
either form a path P whose first node is not j(2), or do not form a path. In
the first case, ﬁﬂKtr = [i(h),i(h+1)], where i(h+l) is the first node of P.
In the second, the arcs of H with both ends in S* form k paths Pl""’Pk’
with k > 2; and ﬁnxtr = [1(h),1(h+D1, .., [1(h),1 (0 +1)], where i(h _+1)
is the first node of Pr’ r = 1,...,k.ll

Proposition 9. A positive premium can be applied to the cutset Ktr

(provided that kt is decreased) if and only if
(20) (Kt;\Kc) n Ao = 0.

If R # @ is the set of those re{l,...,p} for which (20) holds, the
maximum premium applicable to each Ku" r eR, is

r
(21 A" = min {xt, min cij} > 03

(1, 1)K N\ Ky
provided the premium Xt applied to Kt is replaced by

22 1 = " r
(4<) Kt Rt max A .
reR

This replaces the current lower bound B by

(23) B =B+ £ A' - max A\%.
reR reR

Proof. A decrease in At increases the reduced costs of all arcs

of Kt; hence makes it possible to apply a positive premium to the arcs
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of those, and only those, cutsets Ktrsatisfying condition (20) The
maximum size of the premium on K&r:is g defined by (21), positive for
those r for which (20) holds. The premia AT are however applicable only
if Kt is diminished by the amount of the largest premium applied to the
arcs of any cutset K. i.e., only if Kt is replaced by it of (22
(otherwise some of the reduced costs become negative). If this is done,
the current lower bound B is replaced by

’

r ~
BB =B+ Z A + (Kt s Xt)

reR

which yields (23) after substituting for XC.H

Bounding Procedure 4 looks for cutsets K, to which a premium Ae > 0
had been applied and which are intersected by the tour H in more than one
arc. For each arc (ir’jr) of ﬁ that belongs to such a cutset Kt’ we try
to find a set S* of nodes containing jr and satisfying the conditions
of Propositions 8 and 9; i.e., such that the arcs of ﬁ with both ends in Sr
form a path whose first node is j.» and that the cutset K = (§%,s%)
satisfyies (20). As a matter of practicality,we first try |[S¥| = 2, then

|Sr| = 3 etc., until either we find a set which satisfies (20) or we find

out that none exists. Taking the candidate sets in this order makes sense,
since smaller sets S° define smaller cutsets Ky over which one takes the
minimum in (22) to define the premia S

1f no sets S* with the desired properties is found, we take another
arc of ﬁrth. Otherwise we compute xr, the premium to be applied to the
cutset Kir,using (22); and then take the next arc of ﬁF\Kt. When all arcs

of HfWKthave been examined, we compute the new value it of the premium

PN IRE TR L THRA ., e DA T o ey - T T - -
e PRI R . b ; M id
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applicable to the arcs of Kt’ as given in (22), and replace Kt by Xt. All

this replaces the reduced costs éij by

i ( Eij s (1,3) eK \K_, T eR
G g wxf sl (i,) €K _NK_, reR
cij = ﬂ ] seR t
| Eij 2 :2§ 37 (i,3) eKt\\(SER E..)
\ Eij all other (i,j) e¢A

\
and the lower bound B by B’ defined in (23). If Xt > 0, the inequality %
associated with Kt (which is slack for X) continues to be represented in
the Lagrangean form (1’). If, however, it =0, i.e., max kr = Xt’ then :

reR
the inequality corresponding to Kt is removed from (1’) and we have

succeeded in replacing this constraint, slack for the solution ¥, with a
set of inequalities that are all tight for X.

1f TT is the index set of those inequalities (7a) that are slack for
% and for which |R| # @, and if we attach a subscript t to the index sets
R associated with each cutset Kt and to the premia xr indexed by R, then
at the end of Bounding Procedure 4 we have the lower bound

r r
(24) BA = 33 + = % Kt = % max )\t.

+
teTl rth teT1 reRt

3.2. Example 2. Consider the reduced cost matrix of Table 6 resulting from
the solution of AP for an 8-city TSP. The value of the AP solution is v(AP)

= 50. The admissible graph is given in Fig. 5.
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Applying bounding procedure 1 and taking cutset K, = ({1,2,3,4} {5,6,7,8})

we obtain K1= 3 and hence B.= 53. The reduced cost matrix [Z ] is shown

1
in Table 7 and the admissible graph G

ij

0 ia Fig. 6.
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Bounding procedure 1 is complete and bounding procedures 2 and 3 are

unsuccessful in improving the bound beyond B = 53,

1
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Fig. 5. Graph G

0 defined by the AP solution.
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Fig. 6. G0 after bounding procedures 1, 2 and 3.
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A tour H = (1,5,6,2,3,7,8,4,1) is detected in G., but H contains

O)

two arcs of the cutset Kl’ and is therefore not necessarily optimal.

Applying bounding procedure 4 to Kl’ we identify the cutsets K1 T
’
((1,2,3,4,5,6}, (7,8]) wich Ay=2, and K| ,= ({1,2,3,4,7,8}, {5,6]) wich

ki= 2, while reducing the multiplier associated with cutset K1 from

X1= 3 to K1= 1.

The new reduced cost matrix is given in Table 8 and the associated

admissible graph is shown in Fig 7.

12 %A 5 RILY. B
1f (@8] 5 ¥ © & & 3
2f 2 x @18 1 3 8 2
3f 9 5 xw fjof ¢ 4 B 1
Lcif] = 4 [O:l 7 6 X < 2 3 6 Table 8
s{ e 4 5 6 x [g] o 3
61 7 o8 5 @ % 4 2
| G5 BRSO SRR R )
g% g sa & 0 X

The lower bound is now improved from 53 to B4 =53 +2+2 -2 =55,
as given by (24).
Next we turn to the inequalities (7b).

3.3. Bounding Procedure 5. Suppose the inequality (7b) defined by the

node set S is slack for %, i.e., the tour fl contains fewer than ‘Stl-l
arcs of the set (St’st)' Let Gt be the subgraph of G induced by the arc
set H N (St,St), i.e., the graph consisting of those arcs of the tour il

with both ends in St’ and the end-nodes of these arcs. Note that

HN (Sc’st) may be emptv, since it is possible for a tour to contain all
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nodes in Sc without containing any arc with both ends in St; and when this

is the case, no new inequalities can be derived from St'

1,...,CS be the (connected) '

Assume now that H N (S..S,) # 9, and let C
components of Gt' For qeQ = {1,...,s}, let Sq and Aq denote the node set
and arc set, respectively, of Cq. By construction, each c? is an open

(directed) path, with 2 < |Sq[ < [St[ ~ 1 and [Aql = [Sql - 1; hence =x

satisfies with equality each of the inequalities

z z

q
s S -1 ’ q.Q
1¢sY j¢st Is°]

X4
or, to put them in the form (7b),

(25) - & z

.21~ 8% , ge9.
1esd jes? ij

Since (Sq,Sq)ﬂAo #0 ,¥qe¢ Q, these inequalities do not admit a positive
penalty (without a change in the dual variables u,v) , unless the
penalty M associated with St is reduced. 1f, however, this can be done,
then each of the inequalities (25) admits a positive penalty and the current -
lower bound may be strengthened. The next proposition states the conditionms

for this.

Let Ft be the set of those arcs of G having both ends in St, but not

both ends in the same set Sq , for any qeQ; i.e., let

F=(,)- U ¢%s%
s T qe¢Q

Proposition 10. A penalty u: > 0 can be applied to each of the arc
sets (Sq,Sq), qeQ (provided that the penalty Wy is decreased), if and only

if

(26) F NAG =9 .




If (26) holds, then

@7 u: = min Eij >0,
(1,1) eF,

and the penalty u: can be applied to each arc set (Sq,Sq) provided that the

*
penalty My applied to (St’st) is replaced by R This replaces the

t

current bound B by

(28) BY =8+ (|q] - Duk .

Proof. Since (59,59 ¢ (S,,S,) and (s4,sh n A #0,Y¥qeQ, a positive
penalty u: can be applied to any (and all) of the arc sets (Sq,sq) if and
only if the penalty M applied to the arc set (st’st) can be reduced by the
same amount u: . This, however, is possible if and only if no arc in the
set Ft has a zero reduced cost (i.e., condition (26) is satisfied)

and u: does not exceed the reduced cost of any arc in Ft . When

these conditions are present, all arc sets (Sq,Sq), qeQ , can be penalized
by the amount u: specified in (27), provided the penalty b, on the arc set

(St’st) is replaced by b © u* . The effect of all this on the lower bound

€

*

is to add e

as many times as the number |Q| of components of G., and to
subtract u: once; i.e., to add to the current bound B the amount

*
def - e, .|l

Bounding Procedure 5 takes an inequality (7b) that is slack for %, forms

the associated arc set Ft defined above, and checks condition (26). If (26)
is not satisfied, nothing can be done, and the procedure goes to the next
inequality that is slack for R. 1f (26) holds, we calculate u: given by (27),
and penalize by u: all arc sets (Sq,sq),qc(l, defined by the components of

the graph Gt; while replacing the penalty W, on the arcs of (St,St), by

*
¢

This replaces the reduced costs Eij by




- *
cij "U't ’ (i’j)GFt

cij B (iyj)eA\Ft ’

and the current lower bound B by B” defined by (28). 1If u: < s the
inequality (7b) defined by the vertex set St (which is slack for %)
continues to be part of the Lagrangean expression (1'); if, however,
*
He

=4 i.e. the penalty associated with the inequality in question

e’
becomes zero, then we have succeeded in replacing this inequality in "
by a set of other constraints that are all tight for X .

Next the procedure goes to another inequality (7b) that is slack for
X. When all such inequalities have been examined, let T; be the index set of
of those among them for which condition (26) was satisfied, and for each

te T;, let ]Qt] be the number of components of the graph Gt' Bounding

Procedure 5 then produces the lower bound

*
(29) Bg =B, + T _(|Qf-Du,
te TZ

Finally, we turn to the inequalities (7c¢).
3.4. Bounding Procedure 6. Suppose the inequality (7c) associated
with the articulation point k and the cutsets Ké = (8., S, \ kD,
K”= (s \{k},s ) is slack for x, i.e., the tour H defined by % contains more than
t t t
- ’ "
one arc of the set KéLJK;', and let HN (K UK ) = [(11,31).---.(1P,Jp)}- For

every (1r,jr)eﬁf1(KélJKé'), r=1,...,p, we will specify a node set

STCN\[k} such that,denoting ST = N\S* and K/ = (s",S"\(k}), K = G\{(k},s"),

the only arc of H contained in KérlJKé; is (1,30).
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Proposition 11. The only arc of H contained in KtrLJKtr is (ir,jr),
if and only if S¥ = S\{k}, where S is the node set of one of the two paths
Py = [k,...,ir} and P, = [jr,...,k} in H.

Proof. Assume Sr

S\{k}, where S is the node set of P, or P,. In

Lo "o . i B
{(ir,jr)} and Hanr = @; in the second, HnKn_ )

the first case, HNK/
5 o
and H(WK;; = {(it,jr)}. In both cases, (i,,3,) is the only arc of H contained
‘ "
in KtrUKtr'
G ! "
Conversely, let (ir’jr) be the only arc of H contained in KtrLJKtr.
& ‘ 5 @& L "
Then either {(ir,jr)} = antr and HﬂKtr =@, or ((ir,jr)} HNK and
ﬁf\Kér = @. 1In the first case, H enters S* from k rather than from some node
of ST™\{k}, since ﬁIWK£; = P; and it exits S” exactly once, through i
hence s¥ = S\{k}, where S is the node set of Pl' In the second case, ﬁ
exits sT through an arc whose front end is k, rather than some node of
gr\{k}, since ﬁf\Kér = @; and it enters s* exactly once, through jr;

hence $* = S\{k}, where S is the node set of PZJ

Thus, if the node sets Sr, r=1,...,p, satisfy the conditions of

Proposition 11, then the inequalities

P sl S |

— T ™ L sesyl
! " ij 5 ’ ’ ’
1i,3) cKtt U Ktr

are all satisfied by x with equality. The next proposition states the
conditions under which a positive premium can be applied to the sets KérlJKé;

Proposition 12. A positive premium can be applied to the arc set

/ "
Ktrljxtr if and only if

/ ”
(30) (R UKEDNK ] NAG = 8. |

T Iy e e N e o T T Y PO e ""‘j
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If R # @ is the set of those re{l,...,p} ,for which (30) holds, the

maximum premium applicable to each KérL)Ké;, reR, is

(31) vf = min{v min ¢

: |
. (i,j)eK i

¢ "
where K = (KtrlJKtr)\Kt, provided the premium v_ applied to K _ is

T

e T g

replaced by

?1 (32) Ot =v_ - max v'.
4 reR
3
}1 This replaces the current lower bound B by
: (33) B‘’aB+ I v - max .
reR reR

\

Proof. Analogous to the proof of Proposition 9.ﬁ
] Bounding Procedure 6 looks for indices te’l‘3 for which a positive

premium Vi has been applied to the arc set KélJKé', and for which
ﬁn(xt'uxt”) = {23 sn(@yud ) ), with p > 2. Given such a teT,, |
i for each re{l,...,p} we use the node set of the path PL= (k,..nhi) dn ﬁ, |
1 after removing from it node k, to derive an arc set of the form Kéttjxé; ’
defined in Proposition 11. We then check whether KérLJKé; satisfies (30),
and if so, we calculate the premium vE to be applied to KérlJKé;; otherwise
we move to the next re{l,...,p}. When all arcs of ﬁ(T(KéL.Ké'\ have been
examined, we compute the value Gt of the premium applicable to the arcs

of K_, as given by (32), and replace v by Gt. All this replaces the

t’

1 reduced costs i3 by
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ey r 7 n
1] -V (i,j)e(KtrlJKtr)\Kt, reR
- = r s ’ "y A
cij v’ + max v (i,j)e(KtrlJKtr). Kt’ reR
o seR
c =
ij = s o ’ "
¢y + max v (1,J)ext\ U (R UKL
seR seR
Zij all other (i,j)eA

and the lower bound B by B’ defined in (33).
As in the case of Procedures 4 and 5, if Ot = 0, the inequality
associated with Ké\JKé'is removed from the Lagrangean function (1'),

otherwise it stays there with the new premium.

+
3

% and for which |R| # P, and let us attach a subscript t to the index

Let T. be the index set of those inequalities (7c) that are slack for

set R associated with KéLJKé'and to the premia vF indexed by R. At the
end of Bounding Procedure 6 we then have the lower bound

(34) B, = Bg + z T v= L max v'.

t 4
cch reR, teT, reR,

Naturally, if at any stage of the bounding procedures described above
the lower bound for the current subproblem matches the upper bound on v(TSP)
given by the value of the best tour at hand, the current subproblem is fathomed.
At this point we may find ourselves in one of two possible situations:

(o) we have found a tour in Gp, and used it to obtain the lower bound Bg

on the value of the current subproblem; or (B) the attempt to find a tour was
unsuccessful, and 83 is the best lower bound we have for the current
subproblem. In case (B), we define G, = (NAY), with A, » ((1’5)‘Alzij < e},
where the c,, are the current reduced costs and ¢ is the smallest number

ij

for which we are able to find a tour in G‘ within the given time limit., In
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either case, we denote by H the tour at hand, by X the associated
solution, by ;ij’ (i,j)eA, the last set of reduced costs, and by B the
lower bound for the current subproblem. Obviously cx, where ¢ is the original

cost vector, is an upper bound on V(TSP), and the best such upper bound at

each stage will be denoted by B¥*.

3.5. Computational complexity of the bounding procedures. Each of the six

bounding procedures discussed in sections 2 and 3 is polynomially bounded.
For each of them except for the first one, the number of operations required
in the worst case is 0(n3), where n is the number of cities. For procedure 1,
this number if O(na). Solving the assignment problem at the start also
requires at most 0(n3) operations.

At every anode of the search tree, the bounding procedures are applied
once (after solving the assignment problem, if necessary) in the order 1,2,3.
If at that point the node was still not fathomed (i.e., the lower bound is
still below the current upper bound), an attempt is made at finding a tour in GO'
Though there is no algorithm guaranteed to accomplish this in polynomial time,
we let our implicit enumeration procedure run only for a fixed amount of time,
that is an input parameter defined as a linear function of n. If a tour is
found, bounding procedures 4,5,6 are applied in that order; otherwise we
branch.

In conclusion, the amount of work performed at any given node of the

search tree is O(na) in the worst case.
4. Branching Rules
Before branching, we attempt to fix some variables by using the

bounds B and B*, Let

Q = {(1.Jm\21j > B* - B},

3 . P N R . .3 AT . Y — - e
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It is not hard to show (see [1]) that, if the reduced costs Eij are derived
from the same dual solution and Lagrange multipliers as the lower bound B (as
b is the case here), then any solution x to TSP such that cx < B*
§ must satisfy the condition xij =0, ¥(i,j)€Q0. Hence we set xij =0, (i,j)er
3] for the current subproblem and its descendants, i.e., we replace A by A\QO.
Next we describe two branching rules, which we use intermittently.
) The first rule derives a disjunction from a conditional bound [1]; the

second rule derives one from a subtour-breaking inequality.

4.1. A disjunction from a conditional bound can be obtained as follows.

T

Consider a family of sets QkCZA, k=1,...,p, such that P 0, V(i,j)er,

1]
k=1,...,p. Then if the inequalities

A
> o xij i SRR e
(1,3)eQy
3
were added to the constraint set of LP, the lower bound B could be improved
by choosing appropriate multipliers for these inequalities. Further, if
.
this improved bound (termed conditional, because of the hypothetical nature
{ of the inequalities) matches the upper bound B*, then every solution better
4 than the one associated with B* violates at least one of the above inequalities;

i.e., satisfies the disjunction

p
(35) V(x,, =0, #(1,j)€Q.).
ksl 1] Qk

To implement this principle, we first remove from the Lagrangean
function (1') all those inequalities (7a) and (7¢) that are slack for %

while the associated multiplier W, is positive. If T+ is the index set of

these inequalities, this removal amounts to replacing B by

t

B=B-~- T w
te

T+




for (i,]j)e€A.

~

Next, we choose a minimum-cardinality arc set SCH such that

(36) Z &, -,

(i,j)es 1

The existence of such SCZﬁ would be guaranteed if we removed from
(1’) all inequalities (7) that are slack for x (see [ 1] for a proof).
However, removing the inequalities (7b) would either produce negative
reduced costs, or would require a recalculation of the uy and vj. To avoid
this recalculation, we restrict ourselves to the removal of inequalities
(7a) and (7¢), taking the risk of not being able to find a set Sczﬁ satisfying
(36). Whenever this happens, we apply the second branching rule, to be

discussed below.

Given that (36) holds, let S = {(11,j1),...,(1p,jp)}. We then

construct a p X \A‘ 0-1 matrix D = (dﬁj)by setting d?j = 1 in each column
(i,j) for as many indices ke{l,...,p} as possible, subject to the conditions
k
(37 d =1 k=1, s P
ikjk .
and
(38) F
b2pc e . - (i,3)eA .
k=1 1 T L

These constraints leave some freedom for choosing the entries dk of

ij

each column (i,j)eA, which we use to make the number of 1's in each row as

close to equal as possible,

it
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Proposition 13. Every solution x to TSP such that cx < B* satisfies

the disjunction

B
(39) 1>=/1(xij = 0, ¥(1,1)eQ),
where
k
= i d = = T .
(40) G = . deald =1} o E= Lioowp

Qutline of proof (see [1] for details). If X violates (39), it satisfies

(41) > A SR L
(i,9eQ

Adding (41) to the constraint set of LP and assigning the multiplier (dual

variable) Ei i to the kth inequality (41), yields the lower bound
k- k

* p "
B + 2511=B+’—~~51-
k=1 “kJk (i,j)es *J

B*

v

where the last inequality follows from (36). Hence cx > B*.|

The disjunction (39) creates p subproblems. In the kth subproblem
- 3 a N i
we have xij =0, (i,j)er, and since (ik’Jk)eH"Qk’ the tour H becomes
infeasible for each of the subproblems. On the other hand, the current

solution to AP remains feasible for each of the subproblems.

4.2, A disjunction from a subtour breaking inequality is obtained in the

usual way; i.e., if S is the arc set of a subtour of the AP solution, then

every solution to TSP satisfies the disjunction:
= = .' -
(42) \/ (% 0 and x 1, YL <k-D

(1kyjk)¢8
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At an arbitrary node of the branch and bound tree, a subset S'CS of the
arc set é (of the subtour selected for branching) may already have been
fixed to be in the solution. In this case set S in disjunction (42) is
replaced by S\S'. Branching on (42) creates IS\S'\ subproblems. For
each of these subproblems, the AP solution tc the parent problem becomes
infeasible.

In choosing the arc set S for the disjunction (42), it is desirable to
give preference to subtours (of the current AP solution) having either a
minimum number of arcs (min |S|),or a minimum number of free arcs (min ‘S\S'\),
In the computational tests discussed in the next section we used the first
of these two criteria.

As to the two disjunctions (39) and (42), an efficient procedure must
use them intermittently, since (39) can on occasion be considerably stronger
than (42), while at other times it can be much weaker. We tried several
rules for mixing them, and the one actually used in the tests is discussed

in the next section.

5. Implementation and Computational Experience.

Our algorithm was programmed in FORTRAN IV for the CDC 7600 and tested
on a set of 120 randomly generated asymmetric TSP's of sizes varying between
50 and 325 cities. Here we discuss some features of the implementation, give
the computational results, and interpret them.

5.1. Use of sparsitv. Unlike in the case of those symmetric TSP's whose

costs are based on distances and can therefore be generated whenever needed
from the 2n coordinates of the cities, in the case of the asymmetric TSP
one has to explicitly store the costs, whose number in case of a complete graph

is n(n-1). However, our procedure derives both lower and upper bounds on
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the value of the problem and, as discussed at the beginning of section 4,
provides a valid criterion for setting to O certain variables. As it will be
discussed below, the number of variables that can be fixed at 0 before the
first branching is usually very high. Therefore at that point we actually
remove from the graph all those arcs whose variables can be fixed at 0,

and from then on we work with a graph (usually quite sparse) represented

by a list of nodes and a list of arcs with their costs. Additional fixing
of variables (at O or 1) later in the procedure is handled differently

(see below).

5.2. Solution of the AP's. At every node of the search tree, a subset of

variables is fixed at 0, another subset is fixed at 1, and the current
problem is the one in the free variables. A variable xij is set to 1 by
adding a large number M > 0 to all ik k=1,..., n, k # j. A variable xij
is set to 0 by adding M to cij' The reason for not simply removing the arc
from the graph, as done before the first branching, is that (a) the variable
and its cost may be needed later on another branch; (b) the transition from
the old AP solution to the one for the new subproblem is easier this way.

All AP's are solved by the Hungarian algorithm modified as follows:
(i) At every subproblem, we start with a solution derived from the solution of

the predecessor problem. In particular, the growing of an alternating tree

(in search of an augmenting path during the application of the Hungarian

algorithm) starts with a matching (i.e., a set of independent zeroes in the

reduced cost matrix) derived from the solution to the predecessor of the

current subproblem. A single augmenting path is almost always sufficient to

solve the current AP.
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(ii) Since the Hungarian algorithm is a dual procedure, it can be terminated

prematurely whenever the value of the objective function exceeds the value of

the current upper bound.

5.3. Branching and node selection. The two types of branching discussed

in section 4 are used intermittently according to the following rule. A

branching of type 1 (based on disjunctioa (39)) is

performed whenever a set

of arcs S, S = {(11,j1),...,(ip,jp)}. can be found, such that

(i) 1inequality (36) is satisfied;

(ii) ‘S| < % + 1, where p is the condinality of the smallest subtour in

the current AP solution; and

(1ii) at least n/3 variables can be fixed at 0 on each branch.

Whenever any of the above conditions is violated, a branching of type 2

(using disjunction (42)) is performed.

The node selection rule used in the ccde is to

ehoose a successor of the

current node whenever available, and otheiwise to select a node k for which

the following evaluation attains its minimum:

s(k)-1

B() = [B() - v(AP)] * Sats

Here B(k) is the lower bound for subproblem k,

v(AP) is the value of the

(initial) AP, while s(0) and s(k) are the number of subtours in the solutions

to the initial AP and the current one (at node k),

respectively. The integer

s(k) is used as a measure of the '"distance' of the AP solution at node k from

an optimal tour.

5.4, Information stored for each subproblem.

linked list in order of increasing lower bounds.

following information is stored:

All subproblems are stored on a

For each subproblem k the
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- The AP solution.

- The value of the associated bound.

- A pointer to the father node of node k.

- A code to indicate the type of branching (one of the 2 types described
above) that produced node k.

- The number of sons of the father of node k.

- The rank (index) of node k among its brothers.

- If the type of branching that produced node k was based on disjunction
(39), we store the arcs in S = {(il,jl),...,(ip,jp)}. If it was based on
disjunction (42), then a pointer gives the subtour in the AP solution
corresponding to S in (42).

- A list of the operations (in coded and ordered form) which produced
the current matrix [cij] from the matrix for the predecessor node.
(This is not strictly necessary but speeds up considerably the

backtracking process).

5.5. Computational results. The above described code was run on the

CDC 7600 to solve 120 randomly generated test problems whose associated
(directed) graphs are complete and whose cost coefficients were drawn from

a uniform distribution of the integers in the range [1, 1000]. The problems
belong to 12 classes based on size, with n = 50, 75,..., 300, 325, and with
10 problems in each class. Table 9 summarizes the results. These results
are quite remarkable, in that the number of nodes generated is surprisingly
small, and seems to increase only slightly faster than the problem size
(number of cities). This is also illustrated on Fig. 8, where the slope

of the curve is only slightly steeper for 200 < n < 325 than for 50 < n < 200.

Note, also, that the maximum time required to solve any one of the 120

problems was 82 seconds.
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Fig. 8. Numbe nodes in the search tree as a function of problem size (n).
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Since the average cost of the various bounding procedures is not
proportional to their usefulness, we have tested each of the bounding

procedures individually and in subsets to see whether their use pays off.

The outcome of our tests was that using all 6 bounding procedures is more
efficient than using any subset in any combination.

Another remarkable feature of the approach discussed here is the large
number of arcs that can be removed from the graph (of variables that can be
permanently fixed at 0) at the root node of the search tree, as a result of
the test discussed at the beginning of section 4. This is shown in Table 10.
The fact that such a high proportion of the arcs can be removed before
branching shows the power of the bounding procedures used in our approach.
For a comparison, if only the bound obtained from AP were used, then the

percentage of variables removed in problem classes 1, 2 and 3 would be on the

average 87% (and this percentage does not seem to increase with problem size).
Thus, for problem class 3, for example, our bounding procedures reduce the
. number of arcs remaining in the graph from the 137 that would be left by the

AP bound, to 2.9%.

Table 10. Percent of arcs removed on the average at the root node.

Problem class ERE 5 14 18 16 1218 1% j10)]121]1

|

|

©5.3196.4197.1197.3197.3|97.6 97.9198.1 98.4(98.3(98.698.7

Arcs removed (average)
Total arcs

i

x 100

In connection with the two branching rules, it is important to mix them

judiciously. While rule 1 (disjunction (39)) often allows one to fix more j

variables than rule 2 (disjunction (42)), if used as the only branching rule

it yields inferior results, since occasgionally it is very bad. The mixing
strategy used in the above runs (and discussed under 5.3) has resulted in
rule 1 being used only at the upper levels of the search tree (often at level
1, or 1 and 2, only). To compare the results obtained by using this strategy
with those obtainable by using rule 2 only, we ran 4 of the 12 problem sets
(i.e., 40 of the 120 problems) with branching rule 2 only. Table 11 compares

the results.




T

&1=

Table 11. Comparison of branching rules

Class n E? Average no. of nodes | Computing time (CDC 7600 sec.)
| i|Rule 2 Mix of Rule 2 Mix of
' rules 1 and 2 rules 1 and 2
i | B
1 | 50 10.3 | 12.3 .29 .20 '
3 {100 || 31.9 39.1 2.10 71 5
5 150 36.8 &4%.7 4.60 1.97
7 | 200 49.9 63.4 11.68 6.06

Note that although branching rule 2 tends to produce a smaller number
of nodes than the mixed strategy described in section 5.3, it also tends to
require about twice as much time than the latter. This is because the
disjunction (39) (rule 1) creates nodes for which the AP solution at the
father node remains feasible, and for which a large number of variables can

be fixed at 0 -- two features that make such nodes easy to fathom.

6. The Svmmetric Case

Our algorithm can of course be applied to symmetric TSP's as it is, but
it would not be efficient for such problems in its present form. This is
so because of the well known fact that AP's associated with symmetric TSP's -
tend to have optimal solutions involving a large number of sudbtours of length
two. However, our approach can easily be adapted to the symmetric case by
replacing the assignment problem with the 2-matching problem as the basic
relaxation of the TSP. We are in the process of developing such an algorithm

for the symmetric TSP.
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violating the constraints, so as to strengthen the current lower bound. ?]
Upper bounds are generated by a fast heuristic whenever possible. When the
bound-strengthening techhiques are exhausted without matching the upper '
with the lower bound, we branch by using two different rules, according to i
the situation: the usual subtour breaking disjunction, and a new disjunction |
based on conditional bounds. We discuss computational experience on 120 i
randomly generated asymmetric TSP's with up to 325 cities, the maximum time
used for any single problem being 82 seconds. Though the algorithm discussed |
here is for the asymmetric TSP, the approach can be extended to the symmetric
TSP by using the 2-matching problem instead of AP.
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